

6 + 6W STEREO AMPLIFIER WITH MUTE & ST-BY

PRODUCT PREVIEW

- WIDE SUPPLY VOLTAGE RANGE UP TO ±18V
- $6 + 6W @ THD = 10\%, R_L = 8\Omega, V_S = \pm 14V$
- NO POP AT TURN-ON/OFF
- MUTE (POP FREE)
- STAND-BY FEATURE (LOW Iq)
- SHORT CIRCUIT PROTECTION TO GND
- THERMAL OVERLOAD PROTECTION

DESCRIPTION

The TDA7499 is class AB dual Audio power amplifier assembled in the Multiwatt package, specially designed for high quality sound application as Hi-Fi music centers and stereo TV sets.

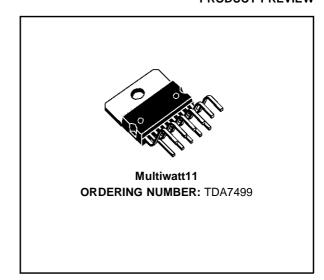
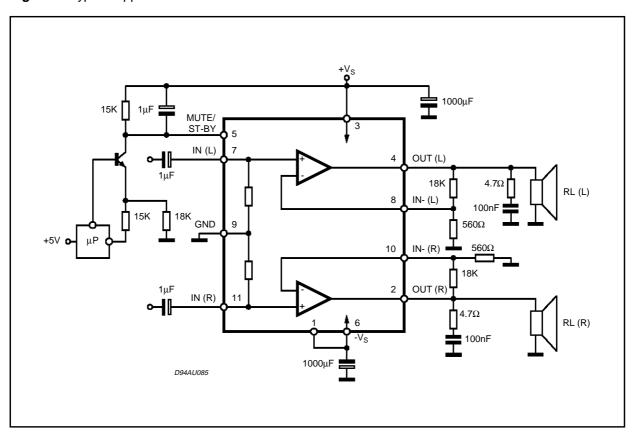
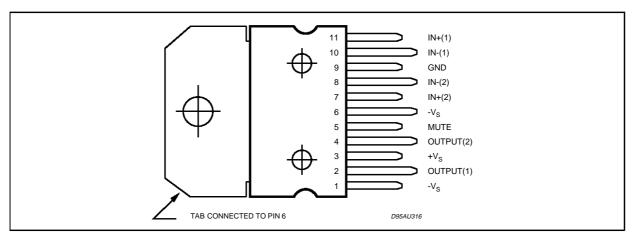



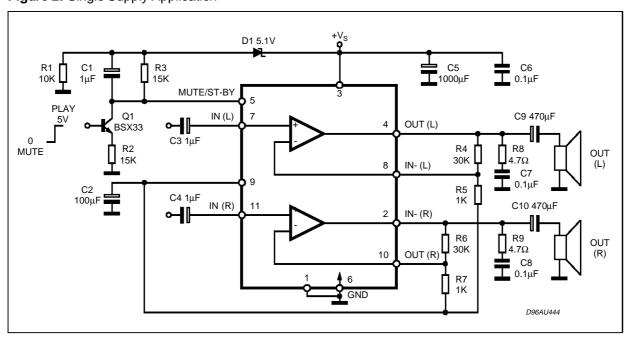
Figure 1: Typical Application Circuit



May 1996 1/7

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	DC Supply Voltage	±20	V
lo	Output Peak Current (internally limited)	2.5	Α
P _{tot}	Power Dissipation T _{case} = 70°C	23	W
T _{op}	Operating Temperature	0 to 70	ç
T _{stg} , T _j	Storage and Junction Temperature	-40 to +150	°C

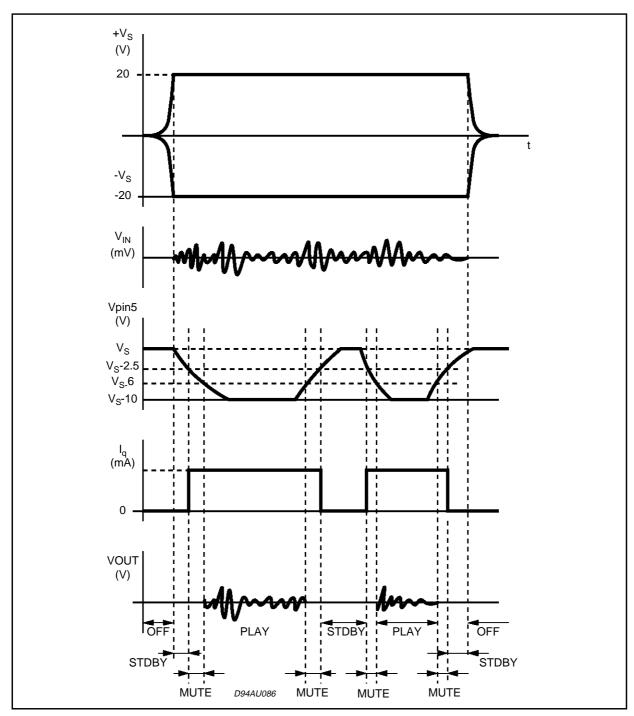

PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Symbol Description			Unit
R _{th j-case}	Thermal Resistance Junction-case	Max	2.8	°C/W
R _{th j-amb}	Thermal Resistance Junction to Ambient	Max	35	°C/W

Figure 2: Single Supply Application

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $V_S = \pm 14V$; $R_S = 50\Omega$; $G_V = 30dB$; f = 1KHz; $T_{amb} = 25^{\circ}C$, unless otherwise specified.)


Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Range	$R_L = 8\Omega$	<u>+</u> 5		<u>+</u> 18	V
		$R_L = 4\Omega$	<u>+</u> 5		<u>+</u> 13.5	V
Iq	Total Quiescent Current			50	90	mA
Vos	Input Offset Voltage		-25		+25	mV
I _b	Output Bias Current			500		nA
Po	Output Power	$THD = 10\%$ $R_L = 8\Omega ;$ $V_S \pm 11V; R_L = 4\Omega$	8	10 7.5		W W
		THD = 1% $R_L = 8\Omega$; $V_S \pm 11V$; $R_L = 4\Omega$	6	7.5 6		W W
THD	Total Harmonic Distortion	$R_L = 8\Omega$; $P_O = 1W$; $f = 1KHz$		0.03		%
		$R_L = 8\Omega$; $P_O = 0.1$ to 5W; $V_S \pm 13V$; f = 100Hz to 15KHz		0.2	0.5	%
		$R_L = 4\Omega$; $P_O = 1W$; $f = 1KHz$		0.02		%
		$R_L = 4\Omega$; $V_S \pm 10V$; $P_O = 0.1$ to $4W$; f = 100Hz to $15KHz$		0.2	1	%
Ст	Cross Talk	f = 1KHz f = 10KHz	50	70 60		dB dB
SR	Slew Rate		6.5	10		V/μs
G _{OL}	Open Loop Voltage Gain			80		dB
e _N	Total Input Noise	A Curve f = 20Hz to 22KHz		3 4	8	μV μV
Ri	Input Resistance		15	20		ΚΩ
SVR	Supply Voltage Rejection (each channel)	fr = 100Hz Vr = 0.5V		60		dB
Tj	Thermal Shut-down Junction Temperature			145		°C
MUTE FUN	CTION [ref: +Vs]					
VT _{MUTE}	Mute / Play Threshold		-7	-6	-5	V
A _M	Mute Attenuation		60	70		dB
STAND-BY	FUNCTION [ref: +Vs] (only For Sp	plit Supply)				
VT _{ST-BY}	Stand-by / Mute Threshold		-3.5	-2.5	5	V
A _{ST-BY}	Stand-by Attenuation			110		dB
I _{q ST-BY}	Quiescent Current @ Stand-by			3	6	mA

MUTE STAND-BY FUNCTION

The pin 5 (MUTE/STAND-BY) controls the amplifier status by two different thresholds, referred to $\pm V_S$.

- When $V_{\text{pin}5}$ higher than = +Vs 2.5V the amplifier is in Stand-by mode and the final stage generators are off
- when V_{pin5} is between +Vs 2.5V and +Vs
 6V the final stage current generators are switched on and the amplifier is in mute mode
- when V_{pin5} is lower than +Vs 6V the amplifier is play mode.

Figure 3.

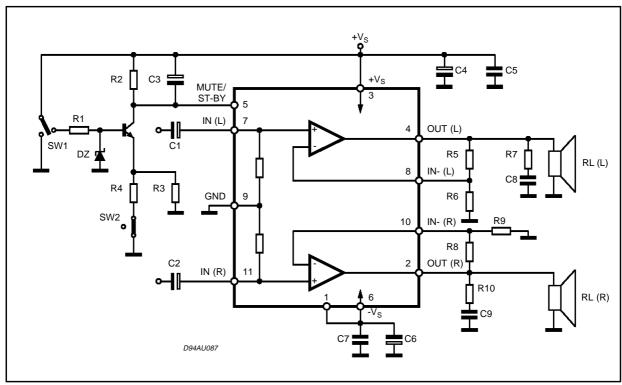
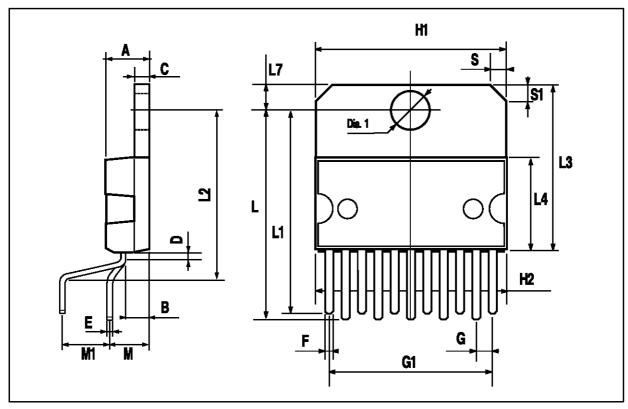


Figure 4: Test and Application Circuit (Stereo Configuration).

APPLICATIONS SUGGESTION

(Demo Board Schematic)

The recommended values of the external compo-


nents are those shown are the demo board schematic different values can be used: the following table can help the designer.

COMPONENTS	RECOMMENDED VALUE	PURPOSE	LARGER THAN RECOMMENDED VALUE	SMALLER THAN RECOMMENDED VALUE
R1	10ΚΩ	Mute Circuit	Increase of Dz Biasing Current	
R2	15ΚΩ	Mute Circuit	V _{pin} # 5 Shifted Downward	V _{pin} # 5 Shifted Upward
R3	18ΚΩ	Mute Circuit	V _{pin} # 5 Shifted Upward	V _{pin} # 5 Shifted Downward
R4	15ΚΩ	Mute Circuit	V _{pin} # 5 Shifted Upward	V _{pin} # 5 Shifted Downward
R5, R8	18ΚΩ	Closed Loop Gain	Increase of Gain	
R6, R9	560Ω	Setting (*)	Decrease of Gain	
R7, R10	4.7Ω	Frequency Stability	Danger of Oscillations	Danger of Oscillations
C1, C2	1μF	Input DC Decoupling		Higher Low Frequency Cutoff
C3	1μF	St-By/Mute Time Constant	Larger On/Off Time	Smaller On/Off Time
C4, C6	1000μF	Supply Voltage Bypass		Danger of Oscillations
C5, C7	0.1μF	Supply Voltage Bypass		Danger of Oscillations
C8, C9	0.1μF	Frequency Stability		
Dz	5.1V	Mute Circuit		

^(*) Closed loop gain has to be => 25dB

MULTIWATT11 PACKAGE MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			5			0.197
В			2.65			0.104
С			1.6			0.063
D		1			0.039	
Е	0.49		0.55	0.019		0.022
F	0.88		0.95	0.035		0.037
G	1.57	1.7	1.83	0.062	0.067	0.072
G1	16.87	17	17.13	0.664	0.669	0.674
H1	19.6			0.772		
H2			20.2			0.795
L	21.5		22.3	0.846		0.878
L1	21.4		22.2	0.843		0.874
L2	17.4		18.1	0.685		0.713
L3	17.25	17.5	17.75	0.679	0.689	0.699
L4	10.3	10.7	10.9	0.406	0.421	0.429
L7	2.65		2.9	0.104		0.114
М	4.1	4.3	4.5	0.161	0.169	0.177
M1	4.88	5.08	5.3	0.192	0.200	0.209
S	1.9		2.6	0.075		0.102
S1	1.9		2.6	0.075		0.102
Dia1	3.65		3.85	0.144		0.152

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1996 SGS-THOMSON Microelectronics - All Rights Reserved ® MULTIWATT is a registered trademark of companies belonging to the SGS-THOMSON Microelectronics Group

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

